
Casey has a square image made up of black and white pixels

represented as 0 and 1 respectively. As part of an image analysis

process, Casey needs to determine the size of the largest square area

of white pixels. Given a 2-dimensional square matrix that represents

the image, write a function to determine the length of a side of the

largest square area made up of white pixels.

For example, the n x n = 5 x 5 matrix of pixels is represented as arr =

[[1,1,1,1,1], [1,1,1,0,0], [1,1,1,0,0], [1,1,1,0,0], [1,1,1,1,1]. A diagram of

the matrix is:

1 1 1 1 1

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 1 1

The largest square sub-matrix is 3 x 3 in size starting at position (0, 0),

(1, 0) or (2, 0). The expected return value is 3.

Function Description

Complete the function largestMatrix in the editor below. The function

must return width of the largest square sub-matrix of white pixels.

largestMatrix has the following parameter:

 arr[arr[0][0],...arr[n-1][n-1]]: a 2D array of integers

Constraints

1 ≤ n ≤ 500

arr[i][j] ∈ {0, 1} (0 denotes black pixel and 1 denotes white pixel)

Input Format For Custom Testing

The first line contains an integer, n, the number of rows.

The second line contains an integer, n, the number of columns.

Each line i of the n subsequent lines (where 0 ≤ i < n) contains n

space-separated integers that describe arr[i].

Sample Case 0

Sample Input For Custom Testing

3

3

1 1 1

1 1 0

1 0 1

Sample Output

2

Question - 1
Casey's Image Editing

HSPC 2019 - MS Team 180 minutes

Help

https://www.hackerrank.com/x/tests

Explanation

(0, 0) to (1,1) is the maximum square sub-matrix that contains all

white pixels.

Sample Case 1

Sample Input For Custom Testing

3

3

0 1 1

1 1 0

1 0 1

Sample Output

1

Explanation

There is no square sub-matrix of size greater than 1 that contains all

white pixels.

The janitor at Hacker High School is insanely efficient. By the end of

each day, all of the waste from the trash cans in the school has been

shifted into plastic bags which can carry waste weighing between 1.01

pounds and 3.00 pounds. All of the plastic bags must be dumped into

the trash cans outside the school. The janitor can carry at most 3.00

pounds at once. One trip is described as selecting a few bags which

together don't weigh more than 3.00 pounds, dumping them in the

outdoor trash can and returning to the school. The janitor wants to

make minimum number of trips to the outdoor trash can. Given the

number of plastic bags, n, and the weights of each bag, determine the

minimum number of trips if the janitor selects bags in the optimal way.

For example, given n = 6 plastic bags weighing weight = [1.01, 1.99, 2.5,

1.5, 1.01], the janitor can carry all of the trash out in 3 trips: [1.01 +

1.99 , 2.5, 1.5 + 1.01].

Function Description

Complete the function efficientJanitor in the editor below. The

function must return a single integer that represents the minimum

number of trips to be made.

efficientJanitor has the following parameter(s):

 weight[weight[0],...weight[n-1]]: an array of floating-point integers

Constraints

1 ≤ n ≤ 1000

1.01 ≤ weight[i] ≤ 3.0

Input Format For Custom Testing

The first line contains an integer, n, that denotes the number of

elements in weight.

Question - 2
Efficient Janitor

Each line i of the n subsequent lines (where 0 ≤ i < n) contains an

integer that describes weight[i].

Sample Case 0

Sample Input For Custom Testing

5

1.50

1.50

1.50

1.50

1.50

Sample Output

3

Explanation

In this case, the janitor will carry the first 2 plastic bags together, the

3 and 4 together and the last one alone to dispose of all of the

trash in 3 trips.

Sample Case 1

Sample Input For Custom Testing

4

1.50

1.50

1.50

1.50

Sample Output

2

Explanation

In this case, the janitor will carry the first 2 plastics bags together

and the 3 and 4 together requiring only 2 trips.

Max is developing a new version of the game of 3-D twister, where the

cells on the mat have to be painted in three colors: Red, Blue,

and Green. The mat is a 2-dimensional grid of size 3 x n. Max wants to

know how many different mats he can make, painting the cells in three

colors, Red, Blue, and Green such that:

1. All the n cells of a single row don't have the same color.
2. The 3 cells of a single column are not all the same color.

For example, given n=2, there are 174 valid ways to paint the mat. Some

of them are as shown in the image below:

Question - 3
Improved Game of Twister

rd th

rd th

Write code to compute the number of ways in which Max can paint the

mat, using the given function.

Function Description

Complete the twisterMat function in the editor below. The function

must return an integer denoting the number of ways in which you can

paint the given grid. The result should be calculated as a mod of 10 +7.

twisterMat has only one parameter:

 n: An integer, denoting the number of columns of the mat.

Constraints

2 ≤ n ≤ 20000

Input Format For Custom Testing

The only line of input contains an integer, n, denoting the number of

columns of the given mat.

Sample Case 0

Sample Input For Custom Testing

2

Sample Output

174

Explanation

n = 2

Some valid ways to fill the mat:

1. RedBlue

BlueRed

BlueGreen

2. RedBlue

BlueGreen

RedBlue

3. BlueRed

GreenBlue

GreenBlue

Some invalid ways are:

1. RedBlue

RedGreen

RedBlue

2. GreenGreen

GreenBlue

BlueBlue

Sample Case 1

Sample Input For Custom Testing

3

Sample Output

9

9750

Explanation

n = 3

Some valid way to fill the grid:

1. BlueBlueGreen

GreenRedRed

RedRedBlue

2. BlueRedBlue

GreenBlueGreen

BlueRedRed

3. BlueRedBlue

GreenBlueGreen

GreenRedBlue

Some invalid ways are:

1. RedRedRed

BlueRedGreen

GreenRedBlue

2. BlueBlueBlue

RedRedGreen

GreenGreenRed

Alex wants to paint a picture but hates taking the brush off the canvas.

In one stroke, Alex can only paint the same colored cells which are

joined via some edge.

Given the painting, determine the minimum number of strokes to

completely paint the picture.

Take for example, the canvas with height given by h = 3 and width

given by w = 5 is to be painted with picture picture=["aabba", "aabba",

"aaaca"], the diagram below shows the 4 strokes needed to paint the

canvas.

 Strokes

 Canvas 1 2 3 4

 aabba aa bb a

 aabba aa bb a

 aaaca aaa c a

Function Description

Complete the function strokesRequired in the editor below. The

function must return an integer, the minimum number of strokes

required to paint the canvas.

strokesRequired has the following parameter(s):

 picture[picture[0],...picture[h-1]]: an array of strings where each

string represents one row of the picture to be painted

Question - 4
Strokes to paint

Constraints

1 ≤ h ≤ 10

1 ≤ w ≤ 10

1 ≤ h*w ≤ 10

len(picture[i]) = w (where 0 ≤ i < h)

picture[i][j] ∈ {'a', 'b', 'c'} (where 0 ≤ i < h and 0 ≤ j < w)

Input Format For Custom Testing

The first line contains an integer, h, that denotes the height of the

picture and the number of elements in picture.

Each line i of the h subsequent lines (where 0 ≤ i < h) contains a

string that describes picture[i].

Sample Case 0

Sample Input For Custom Testing

3

aaaba

ababa

aaaca

Sample Output

5

Explanation

The 'a's can be painted in 2 strokes, 'b's in 2 strokes and 'c' in 1

stroke, for a total of 5.

 Strokes

 Canvas 1 2 3 4 5

 aaaba aaa b a

 ababa a a b b a

 aaaca aaa c a

Sample Case 1

Sample Input For Custom Testing

4

bbba

abba

acaa

aaac

Sample Output

4

Explanation

The 'a's can be painted in 1 stroke, the 'b's in 1 stroke and each 'c'

requires 1 stroke.

 Strokes

 Canvas 1 2 3 4

 bbba bbb a

 abba bb a a

 acaa a aa c

 aaac aaa c

5

5

5

Pi's father, Danny, runs the Hackerville Zoo. He is moving to Rookieville

and wants to take all of the zoo animals with him via ship. He is

confused about how to arrange them because a few of the species

cannot be kept together in the same cabin.

There are n animals placed in a straight line. Each animal is identified

by a unique number from 1 to n in order. There are m pairs (a[i], b[i])

which imply that animals a[i] and b[i] are enemies and should not be

kept in the same cabin. Pi is good at solving problems and he came up

with following challenge: count the number of different groups that

do not contain any pair such that they are enemies. A group is defined

as an interval (x, y) such that all animals in the range from x to y form a

group. Determine the number of groups that can be formed according

to the Pi's challenge.

For example, given n = 3 animals and m = 3 pairs of enemies, a = [1, 2,

3] and b = [3, 3, 1], animal 1 is the enemy of animal 3, and animal 3 is

the enemy of animals 1 and 2. Because 3 is an enemy of both 1 and 2, it

must be in its own cabin. Animals 1 and 2 can be roomed together or

separately. There are four possible groupings meeting the constraints:

{1, 2} , {1}, {2}, {3}. Note that the intervals are along the original line of

animals numbered consecutively from 1 to n, i.e. [1, 2, 3] in this case.

They cannot be reordered.

Function Description

Complete the function angryAnimals in the editor below. The function

must return the number of groups that can be formed according to Pi's

challenge.

angryAnimals has the following parameters:

 n: an integer that denotes the number of unique animals

 a[a[0],...a[m-1]]: an array of integers

 b[b[0],...b[m-1]]: an array of integers

Constraints

1 ≤ n ≤ 10

1 ≤ m ≤ 10

1 ≤ a[i], b[i] ≤ n

Input Format For Custom Testing

The first line contains an integer, n.

The second line contains an integer, m, that denotes the number of

elements in a.

Each line i of the m subsequent lines (where 0 ≤ i < m) contains an

integer that describes a[i].

The next line again contains an integer, m, that denotes the number

of elements in b.

Question - 5
Angry Animals

5

6

Each line i of the m subsequent lines (where 0 ≤ i < m) contains an

integer that describes b[i].

Sample Case 0

Sample Input For Custom Testing

4

2

1

2

2

3

4

Sample Output

7

Explanation

 (1), (1,2), (2), (2,3), (3), (3,4), (4) are the groups that be formed

according to Pi's challenge.

Sample Case 1

Sample Input For Custom Testing

5

2

1

2

2

3

5

Sample Output

11

Explanation

(1), (1,2), (2), (2,3), (2,3,4), (3), (3,4), (3,4,5), (4), (4,5), (5) are the

groups that can be formed according to Pi's challenge.

Given a list of points described by their (x,y) coordinates on a two

dimensional plane, construct a square surrounding at least a given

number of points within the area enclosed. That area should be

minimal and the square must meet the following conditions:

The x-coordinates and y-coordinates of the points should be
integers.

The sides of the square should be parallel to coordinate axes.

At least k of the given n points should lie strictly inside the square
drawn. Strictly inside means that they cannot lie on a side of the
square.

For example, given n=3 points (1,1), (1,2) and (2,1) and k=3, surround all

three points. The minimum area square is 9 units, going from the origin

(0,0), to (3,3).

Question - 6
Minimum Area

Function Description

Complete the function minArea in the editor below. The function must

return the minimum possible area of the square that satisfies the

constraints, as an integer.

minArea has the following parameter(s):

 x[x[0],...x[n-1]]: an array of integer x coordinates

 y[y[0],...y[n-1]]: an array of integer y coordinates

 k: an integer, the minimum number of points to surround

Constraints

2 ≤ n ≤ 100

-10 ≤ x[i],y[i] ≤ 10

1 ≤ k ≤ n

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the

function.

The first line contains an integer n, the size of the array x.

Each of the next n lines contains an integer x[i] where 0 ≤ i < n.

The next line contains the integer n, the size of the array y.

Each of the next n lines contains an integer y[i] where 0 ≤ i < n.

The last line contains the integer k.

Sample Case 0

Sample Input 0

2

0

2

2

0

4

2

Sample Output 0

36

Explanation 0

The given points are:

(0, 0)

(2, 4)

Choose following four points:

9 9

(-1, -1)

(-1, 5)

(5, 5)

(5, -1)

Draw a square of side six, satisfying the three constraints given in

the problem statement and the area of the square is the minimum

possible.

So, the function returns 36, as the area of the square is side x side (6

x 6 = 36).

Sample Case 1

Sample Input 1

2

0

3

2

0

7

2

Sample Output 1

81

Explanation 1

The given points are:

(0, 0)

(2, 7)

Choose following four points:

(-1, -1)

(-1, 8)

(8, 8)

(8, -1)

Draw a square of side nine that satisfies the three constraints given

in the problem statement and the area of the square is the minimum

possible. The function returns 81 (9 x 9).

We define a sentence to be a string of space-separated words that

starts with a capital letter followed by lowercase letters and spaces,

and ends with a period, i.e., it satisfies the regular expression ^[A-Z][a-z

]*\.$. We want to rearrange the words in a sentence such that the

following conditions are satisfied:

1. Each word is ordered by length, ascending.

2. Words of equal length must appear in the same order as in the
original sentence.

3. The rearranged sentence must be formatted to satisfy the regular
expression ^[A-Z][a-z]*\.$

For example, consider the sentence Cats and hats. First the words are

ordered by length, maintaining original order for ties: [and, cats, hats].

Now reassemble the sentence, applying formatting: And cats hats.

Function Description

Complete the function arrange in the editor below. The function must

return a properly formed sentence arranged as described.

arrange has the following parameter(s):

 sentence: a well formed sentence string

Constraints

1 ≤ | sentence | < 10

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the

function.

A single line of space-separated words denoting sentence.

Sample Case 0

Sample Input 0

The lines are printed in reverse order.

Sample Output 0

In the are lines order printed reverse.

Explanation 0

We organize the strings of each respective length in sentence = The

lines are printed in reverse order. as:

Length 2: {in}

Length 3: {the, are}

Length 5: {lines, order}

Length 7: {printed, reverse}

Question - 7
Arrange the Words

5

We then reassemble our sequences of words as a sentence string,

ensuring that the first letter is uppercase, the intermediate letters

are lowercase, and the string terminates with a period. We return In

the are lines order printed reverse. as our answer.

Sample Case 1

Sample Input 1

Here i come.

Sample Output 1

I here come.

Explanation 1

We organize the strings of each respective length in sentence = Here

i come. as:

Length 1: {i}

Length 4: {here, come}

We then reassemble and format our sentence as: I here come..

Sample Case 2

Sample Input 2

I love to code.

Sample Output 2

I to love code.

Explanation 2

We organize the strings of each respective length in sentence = I love

to code. as:

Length 1: {i}

Length 2: {to}

Length 4: {love, code}

We then reassemble and format our string as I to love code..

Aladdin wants to travel around the world and will choose a circular

path to fly on his magical carpet. The carpet needs enough magic to

take him from one place to another. He knows that after traveling

some distance, he can find a magic source that will enable the carpet

to travel a further distance.

There are n magical sources along the circular path numbered from 0

to n-1. Initially, the carpet has no magic and Aladdin can use a portal to

jump to any magical source and start his journey. The carpet consumes

units of magic equal to the units of distance travelled. He needs to

choose a point to start his journey that will allow him to complete his

journey. Determine the lowest index of the starting points from which

Aladdin can start his journey and visit all of the places in the circular

path in order. If there is no solution, return -1.

For example, there are n = 4 sources of magic along his route: magic =

[3, 2, 5, 4] and dist = [2, 3, 4, 2]. The first attempt is starting at the first

source, magic[0] = 3. He transports there without cost and collects

Question - 8
Aladdin and his Carpet

3 units of magic. The distance to the next point is dist[0] = 2. It takes

2 units of magic to get there and he collects magic[1] = 2 units upon

arrival, so he has 3 - 2 + 2 = 3 units of magic after making his first

carpet ride. Continuing along the journey:

3 - dist[1] + magic[2] = 3 - 3 + 5 = 5

5 - dist[2] + magic[3] = 5 - 4 + 4 = 5

5 - dist[3] = 5 - 2 = 3

At this point, he is back to the first source. Because he can complete

his journey starting at source magic[0], there is no reason to continue

with the analysis so its index, 0, is returned. To illustrate a point from

the same example, if he starts at position 2, where magic[1] = 2 and

dist[1] = 3, he will not be able to proceed to the next point because the

distance is greater than his magic units. Note that the list is circular, so

from magic[3] in this example, the next source on the path is magic[0].

Function Description

Complete the function optimalPoint in the editor below. The function

must return an integer that denotes the minimum index of magic from

which he can start a successful journey. If no such starting point exists,

return -1.

optimalPoint has the following parameter(s):

 magic[magic[0],...magic[n-1]]: an array of integers where magic[i]

denotes the amount of magic in the i source.

 dist[dist[0],...dist[n-1]]: an array of integers where dist[i] denotes the

distance to the next magical source.

Constraints

1 ≤ n ≤ 100000

0 ≤ magic[i] ≤ 10000

0 ≤ dist[i] ≤ 10000

Input Format For Custom Testing

The first line contains an integer, n, that denotes the number of

elements in magic.

Each line i of the n subsequent lines (where 0 ≤ i < n) contains an

integer that describes magic[i].

The next line again contains the integer, n, that denotes the number

of elements in dist.

Each line i of the n subsequent lines (where 0 ≤ i < n) contains an

integer that describes dist[i].

Sample Case 0

Sample Input For Custom Testing

4

2

4

5

2

4

4

3

1

3

Sample Output

th

1

Explanation

Here magic = [2, 4, 5, 2] and dist = [4, 3, 1, 3]. If Aladdin starts at the

second magical source, his magic levels are:

magic[1] = 4

4 - dist[1] + magic[2] = 4 - 3 + 5 = 6

6 - dist[2] + magic[3] = 6 - 1 + 2 = 7

7 - dist[3] + magic[0] = 7 - 3 + 2 = 6

6 - dist[0] = 6 - 4 = 2.

The first point from where Aladdin can start his journey is the 2

magical source. The output should be 1, the index of the 2

location.

Sample Case 1

Sample Input For Custom Testing

4

8

4

1

9

4

10

9

3

5

Sample Output

-1

Explanation

Here magic = [8, 4, 1, 9] and dist = [10, 9, 3, 5]. In each case, the

distance to the next source is greater than the amount of magic at

the current source. No matter where Aladdin starts, he will not be

able to finish his travel.

nd

nd

